1、世界萤石产量的一半用以制造氢氟酸,进而发展制造冰晶石,用于炼铝工业等。电冰箱里的冷却剂(氟利昂)要用萤石。

2、萤石另一重要用途是生产氢氟酸。氢氟酸是通过酸级萤石(氟石精矿)同硫酸在加热炉或罐中反应而产生出来的,分无水氢氟酸和有水氢氟酸,它们都是一种无色液体,易挥发,有强烈的刺激气味和强烈的腐蚀*。

3、在制铝工业中,氢氟酸用来生产氟化铝、人造冰晶石、氟化钠和氟化镁。在航空、航天工业中,氢氟酸主要用来生产喷气机液体推进剂,**喷气燃料推进剂。

4、氢氟酸是有机氟化工的基础原料,它通过与氯仿和四氯化碳相互作用,生产**小、化学稳定*高的氟化的含氯烃和碳氟化合物,作冷冻剂,空气溶胶促进剂,溶剂聚合物的中间体和碳氟化合物树脂和弹*体。

5、氢氟酸与四氯化碳反应制成氟利昂(通常以f表示)。氟利昂除作为冷冻剂外,还广泛用于喷雾剂、灭火剂、氟塑料等。

6、在医**面,氟有机化合物还可以制造含氟****,含氟可的松,含氟碳人造血液、人造心脏和骨骼。在无机氟化工业中,可以生产杀虫剂、防腐剂、防护剂、添加剂、助熔剂和抗氧化剂等。

7、萤石也广泛应用于玻璃、陶瓷、水泥等建材工业中,其用量在我国占第2位。在玻璃工业中,萤石作为助熔剂、遮光剂加入,它能促进玻璃原料的熔化。

8、在水泥生产中,萤石作为矿化剂加入。萤石能降低炉料的烧结温度,减少燃料消耗,同时还能增强烧结时*料液相粘度,促进硅酸三钙的形成。

9、在陶瓷工业中,萤石主要用作瓷釉,它能在瓷釉生产过程中起到助色和助熔作用。如在红色瓷釉中加入萤石后能色泽光亮鲜艳,在陶瓷生产瓷釉中的萤石加入量一般约10%~20%。还参与到搪瓷制品的制造之中。

10、萤石还应用于搪瓷工业和铸石生产中,其加入量分别为3%~10%和3%。

1、萤石在南非、墨西哥、蒙古、俄罗斯、美国、泰国、西班牙等地也有产出。中国是世界上萤石矿产*多的**之一,主要产于湖南东南部的郴州一带,此外浙江、福建等地也有出产。

2、矿物内的电子在外界能量的刺激下,会由低能状态进入高能状态,当外界能量刺激停止时,电子又由高能状态转入低能状态,这个过程就会发光。

3、萤石来自火山岩浆中,在岩浆冷却过程中,被岩浆分离出来的气水溶液中含有许多物质,以氟为主,在溶液沿裂隙上升过程中,温度降低,压力减小,气水溶液中的氟离子与周围岩石中的钙离子结合,形成氟化钙,经过冷却结晶后就得到了萤石。

4、氟化钙晶体原本无色透明。萤石的晶体结构存在“空洞”,很容易被其他离子填充,所以在自然界中,无色透明的纯净萤石*其稀少。这种结构缺陷,同时也让萤石成为颜色*丰富的石头。

萤石是含f的主要矿物,萤石的形成与氟的地球化学*状有密切关系。氟的克拉克值为0.08%,化学*质活泼,易与金属化合形成可溶*化合物。在岩浆中氟的含量很低,不能形成萤石,通常也不易形成**矿物,而常常加入磷灰石晶格,形成氟磷灰石。伟晶期的氟浓度**增大,但主要是与金属元素生成含挥发分的化合物,也可生成少量萤石,只在个别情况下,可形成伟晶岩型萤石矿床。

热液阶段氟的含量较高(部分来自含氟矿物的水解),呈hf、sif4或碱金属氟化物形式出现。hf、sif4等可与碳酸盐岩发生交代反应,大量生成萤石,形成矽卡岩型矿床,反应式为:

高温热液型矿床的围岩常为云英岩、矽卡岩,产在花岗岩与顶板的接触处,伴生矿物有云母、电气石、锡石、黄玉、冰晶石等。中温热液矿床的围岩为绢云母化、黄铁细晶岩化或硅化花岗岩。在低温热液矿床的矿脉中,包有围岩岩块的角砾。

外生条件下,在温湿气候环境中,含氟岩石及矿物易于被地表水和地下水溶解,溶解度随温度增高而增大,氟可随地表水及地下水转移,部分进入土壤中,为粘土矿物吸附,一些火山岩地区土壤中含氟量较高。一些萤石矿床经受风化作用,部分萤石被地下水溶解,在裂隙中再沉积结晶形成钟*状、葡萄状萤石集合体。火山活动可提供大量氟,火山沉积岩中氟含量较高[(100~2900)× 10-6],可形成沉积型萤石矿床,萤石晶粒细小,有时为土状萤石,呈沉积碎屑的胶结物形式产出。

美国学者研究了美国西部萤石矿床后,指出了萤石矿床的形成与板块构造的关系,认为萤石矿床和斑岩钼矿的成矿环境相似。他们认为美国西部萤石矿床与碱*岩浆岩有关,并且推测钙碱*火成岩和碱*更强的岩石,是由于大洋岩石圈板块沿着陆壳下面的俯冲带熔化而形成的。熔化的深度大约超过300km。在这种环境下,富含k和f的金云母可被熔化,产生富k、f的岩浆。在岩浆上升过程中,大量的f以sif4形式分配到蒸汽相中去。当sif4通过与裂谷有关的构造上升到地壳上部时,与原生水和雨水接触,生成hf和sio2,它们与ca2 发生反应,导致caf2和sio2沉淀,形成萤石-石英矿床。

**学者研究了矽卡岩型萤石矿床与花岗岩地球化学特征的关系后指出,萤石经常出现于sn-w矽卡岩矿床中。与形成萤石矿床有关的花岗岩含氟量高,f主要赋存在黑云母中,花岗岩的f含量与黑云母的mg/fe值有关。

综上所述,萤石矿床的主要成矿条件是:①大地构造条件。世界上主要的萤石矿床,分布在靠近大洋板块俯冲带,大陆壳边缘的褶皱带内的构造-岩浆活动带或裂谷带内。此外,也出现在古板块或断块边缘的构造-岩浆带内。在成因上与酸*和碱*岩浆岩有关。②断裂构造条件。a.h.g.mitchell和m.s.garson 1981年指出,萤石-重晶石矿床可产于火山岩区主要的裂谷断裂中。van alstine 1976年强调指出,美国西部很多萤石矿床与断裂带或区域断层线的成因关系,认为f来自地壳下部或地幔上部,断裂是通道,这些萤石矿床大多是浅成低温热液成因,或者是雨水下渗,与岩浆水掺和而成的。它们的分布受墨西哥到落基山断裂带的控制,重要萤石矿床都受断裂、破碎带控制。③围岩条件、硅酸盐岩和碳酸盐岩是cao的源泉,在含f热液作用下有利于生成萤石矿床。

按成因萤石矿床可分为热液型萤石矿床、矽卡岩型萤石矿床、伟晶岩型萤石矿床、湖相沉积型萤石矿床等多种类型,其中热液型萤石矿床为主要工业类型。

1.硅酸盐岩石中的裂隙充填型热液脉状矿床

该类型萤石矿床多分布于中生代陆相火山岩系和酸—中酸*岩浆岩中,为我国重要的萤石矿床类型。矿体常呈陡倾斜脉状产于沉积碎屑岩、变质岩、侵入岩及火山岩的断裂构造中,矿体形态取决于断裂的*质,从简单规则的单脉到各种不规则的复脉状和透镜状,常成群成带出现。矿体长一般100m到几百米,少数千米以上,延深100m到数百米,厚度一般1~6m,矿床规模以中、小型为主,少数为大型。矿体与围岩界线清楚,围岩蚀变**。据气液包裹体测温,成矿温度为99~360℃。矿石矿物组合简单,以萤石、石英为主,常组成萤石型、石英-萤石型等主要矿石类型,属易选矿石。这类矿床不仅是冶金用萤石块精矿的主要来源,也是生产化工用萤石粉精矿的重要类型。主要矿床有浙江武义杨家、湖南衡南、湖北红安、河南陈楼、甘肃高台等萤石矿床。

浙江武义杨家萤石矿床为单一脉状大型萤石矿床,其萤石产量在国内居于首位,产品远销**等国。杨家矿床位于绍兴-江山和余姚-丽水基底断裂之间的北东向上虞-龙泉震旦纪-古生代隆起带。区内由于燕山运动的强烈影响,促使基底断裂继续活动,导致一系列北东向和北西向隆起、坳陷的出现,并伴有大规模的中酸*火山喷发与岩浆侵入,形成一套上侏罗统磨石山组的火山岩系,随后又有下白垩统馆头组、朝川组和方岩组的火山沉积岩系,并伴有潜火山岩侵入。杨家萤石矿主要赋存在上侏罗统磨石山组e段。上覆的下白垩统朝川组岩石在矿区内只有零星出露。矿带总长可达2km。矿体围岩以流纹质晶屑玻屑凝灰岩与熔结凝灰岩为主,次有流纹质玻屑凝灰岩、硅化灰岩或次生石英岩、凝灰质粉砂岩及灰岩透镜体,局部夹有页岩、泥岩等。矿区中部有潜火山岩相霏细岩侵入。区内北北东和北东向压*断裂对成矿起着重要控制作用(图9-1)。矿化蚀变带长达2.2~3.5km,单个矿体长达数百米。矿体呈似脉状产出,相邻矿体间隔15~26m,其间被硅化带相连接,矿体厚一般在2.3~5.8m,局部达7~8m。

本区萤石矿脉成群出现,组成走向ne40°左右,相互平行的一些矿带。矿脉形态通常简单,有的具有分叉现象。矿体围岩以流纹质晶屑玻屑凝灰岩和熔结凝灰岩为主,其次为硅化灰岩,凝灰质粉砂岩及泥岩等。围岩蚀变以硅化和高岭土化为主,伴有叶蜡石化、碳酸盐化、绿泥石化及黄铁矿化。其中矿体两侧硅化现象特别明显。一般硅化带宽0.5~1m,矿脉分支复合处可达2m。矿体下盘常可见厚约几米的由灰岩被交代而形成的次生石英岩。矿体自北东至南西方向,随着硅化作用变弱,矿化也变弱。

矿石类型以石英-萤石型和萤石-石英型为主,次有萤石型,局部见方解石-萤石型。矿石具自形结构、他形结构、隐晶结构及交代结构,构造以致密块状、条带状、环带状和角砾状构造为主。矿石矿物以萤石为主,脉石矿物以石英、玉髓及蛋白石为主,其次有方解石、重晶石、少量黄铁矿、磷灰石及高岭土等。萤石以浅绿至绿色为主,其次为白、紫、玫瑰、浅黄、蓝及无色者。

本区萤石中气液包裹体的均一温度多数为100~145℃,其次为150~230℃,少数为260~360℃。为中—低温火山热液型矿床。

20世纪90年代以来,对产于我国东南沿海地区中生代以来的萤石矿床进行了地质、地球化学、同位素、萤石中包裹体、模拟实验等综合研究,提出了大陆边缘火山带上萤石矿床模式(图9-2)。

模式简要说明:成矿方式以热液充填为主。在晚侏罗世—早白垩世期间喷发的熔岩、火山碎屑岩或侵入体遭受风化剥蚀之后,大气降水下渗,并在火山岩及其下伏的前寒武系结晶基底中循环,汲取了f-,ca2 等组分,形成含矿热液,上升后在浅部岩石的断裂中沉淀成矿。

1—第四系;2—嵊县组玄武岩;3—白垩系;4—上侏罗统火山岩;5—上三叠—下侏罗统浅变质岩;6—前泥盆系陈蔡群;7—古生界;8—元古宇;9—中—酸*侵入岩;10—混合岩化花岗岩;11—火山洼地型盆地;12—压*断裂;13—*质不明断裂;14—深断裂;15—大型矿床;16—中型矿床

成矿时空演化:该类矿床的形成过程可分为如下3个阶段。①火山喷发活动阶段(160~120m a):形成各种火山岩、侵入岩及火山沉积岩,并使基底构造活化,为后来的成矿活动提供能量和物质条件。②地热体系活动与成矿元素汲取阶段(120~90m a):随着岩浆喷发-侵入活动逐渐衰退和停息,断块升降和大陆风化剥蚀作用增强(断陷盆地红色碎屑岩系发育),大气降水在岩石中的渗流和**作用不断增强,在地热梯度和深部岩浆热源作用下,驱使地热水对流,从结晶基底(矿源)中不断淋滤汲取f-、ca2+等组分,形成富含成矿物质的热水溶液。③成矿阶段(90~60ma):由深部上升的含矿热液在地表或近地表的半开放断裂系统中,因温度、压力的突然降低,ph值升高,或与近地表处温度较低的大气补给水混合,导致含矿流体中的成矿组分发生沉淀,形成矿床。

图9-2大陆边缘火山带上萤石矿床模式图

成矿主要机制:①成矿年龄与赋矿岩浆岩之间存在40~70ma的时差。萤石脉切穿的**的地层为不含任何火山岩夹层的白垩纪红层。②主要成矿温度为100~200℃。③成矿流体δd=-75.4‰~43.0‰,δ18o=-8.4‰~3.7‰,与本区白垩纪大气降水在300℃和水/岩比值0.05~1.5条件下与岩石发生**的平衡热水流体的氢氧同位素组成一致。④矿质具多来源特征。萤石的143nd/144nd(在成矿时期80ma时的组成)和87sr/86sr比值分别为0.511868~0.5119369(平均为0.511902)和0.7306~0.7710(平均为 0.7513),赋矿岩石(火山岩和沉积岩)在成矿时期的143nd/144nd和87sr/86sr值分别为0.511186~0.511495(平均0.511340)和0.7081~0.7260(平均0.7140),基底变质岩为0.511251~0.512859(平均0.512034)和0.7455~0.9094(平均0.7936)。这说明晶出萤石的成矿流体的钕和锶同位素组成与基底变质岩在成矿时期的钕和锶同位素组成较接近,而与赋矿岩石差异较大。岩石的f/sr和f/nd比值进行的同位素混合模型研究表明,氟主要(60%~78%)来自前寒武纪的基底变质岩,少部分来自赋矿的火山岩及沉积岩。⑤成矿方式为大气降水成因的地热水对成矿母岩进行淋滤汲取,形成携带矿质的流体,然后在断裂中充填形成矿体。

主要控矿因素:①深大断裂、控盆断裂及次级断裂和构造破碎带、岩体接触带断裂直接控制矿体的分布。②在前寒武系褶皱带上的大面积火山活动及中酸*火山岩广泛分布。

找矿主要标志:①线形展布的含萤石(在地表常被淋失而留下立方形和八面形空洞)硅化带。②f、cao地球化学异常及萤石、重晶石重砂异常。③露头、老采坑、废石堆、转石等。

矿床主要实例:浙江武义杨家、遂昌湖山、龙泉八都及广东河源到吉和江西瑞金谢坊等萤石矿床。

2.碳酸盐岩石中的充填交代型脉状、透镜状萤石矿床

主要分布于地台区,产于碳酸盐岩层的断裂构造带中,系成矿溶液同围岩发生交代又沿裂隙充填形成的萤石矿体。矿体形态复杂多样,常呈脉状、透镜状和囊状,甚至形成复杂的矿巢。矿体一般长数十到数百米,延深几十米到数百米,厚度一般为1~5m。矿床规模以中、小型为主,也有大型矿床。矿石矿物组合较复杂,有萤石、方解石、重晶石等,常组成石英-萤石型、重晶石-萤石型、方解石-重晶石-萤石型等矿石类型,一般属较难选矿石,部分矿石经手选也能获得高品位块精矿。例如,江西德安、云南老厂、四川彭水县二河水、贵州沿河县丰水岭、申基坡等萤石矿床。这类矿床多为共生矿床,而很少成为单一的萤石矿床,例如,四川二河水和贵州丰水岭为萤石、重晶石矿床,贵州晴隆大厂为辉锑矿、黄铁矿、萤石矿床等。

该类型矿床的围岩普遍发育硅化,有的硅化相当强烈,往往成为重要的找矿标志。此外,尚有粘土化、碳酸盐化、重晶石化、绿泥石化、黄铁矿化、绢云母化,较少见到云英岩化。其中重晶石化、碳酸盐化与矿化关系密切。

该类矿床成矿作用受构造控制十分明显。特别是褶皱构造的控制作用,较其他类型矿床更为突出。一般矿床均与背斜关系密切。矿体通常产于背斜轴部、近轴两翼的层间剥离或断裂破碎带中。

(二)碳酸盐岩石中的层控型层状、似层状萤石矿床

这是近年来发现的一种**萤石矿床类型。矿床产于特定层位的碳酸盐岩层中,严格受层位或层间构造所控制,是近年来被肯定很有远景的萤石矿床类型。矿体常呈层状、似层状或透镜状产出。矿体长200~400m,个别达千米以上,延深几十米到数百米,厚度一般1~8米。矿床规模属大型。矿石矿物组合简单,以萤石型、石英-萤石型为主,原矿经手选即能获得w(caf2)85%的块状富矿。

该种类型尽管分布并不广泛,国内仅见于内蒙古苏莫查干敖包矿区,但单个矿床规模大,沉积特点明显,成矿地质条件**。矿床所在区域广泛发育海相中酸*熔岩,矿床赋存于下二叠统火山沉积岩系的碳酸盐岩夹层中,围岩为西里庙组片理化流纹岩、晶屑凝灰岩、英安岩、炭质板岩、结晶灰岩、大理岩等。矿体呈层状、脉状产出。层状矿体与围岩整合接触,矿石具有明显的层纹状构造。脉状矿体受褶皱构造和断裂控制明显。根据矿物包裹体测温,成矿温度较高(85~270℃,或者更高)。围岩蚀变相当微弱,仅轻微高岭土化和硅化。

矿床实例:内蒙古苏莫查干敖包萤石矿床(图9-3)内蒙古四子王旗苏莫查干敖包矿区,隶属内蒙古自治区乌兰察布市四子王旗。位于艾勒格庙西7km.东北距二连浩特90km。矿区内有苏莫查干敖包、敖包吐、伊和尔、额尔其格等矿床。其中苏莫查干敖包矿床已够特大型萤石矿床。根据野外观察到的矿体赋存状态,矿体与围岩之间的接触关系,可分为以下两种情况:①以额尔其格萤石矿床为代表。矿体严格受层位控制,呈层状产出,与围岩整合接触。含矿岩石为灰岩或薄层灰岩夹少量板岩透镜体。矿石呈层纹状或块状。②矿区内*大的苏莫查干敖包萤石矿床赋存在下含矿层中,矿体严格受构造裂隙控制。矿石除部分保留有原沉积层纹构造外,大部分不具原沉积特点。区内敖包吐北矿段也属此类型,该矿床产于西里庙组第三岩*段二云母角岩与第四岩*段长英角岩接触部位,并穿过了第四岩*段的长英岩。矿体形态*为复杂,与围岩之间均成不整合接触。

图9-3内蒙古四子王旗苏莫查干敖包萤石矿床地质图

矿石矿物比较简单,主要由萤石组成,其次有少量粘土、铁质物或碳酸盐。矿石类型按矿物组合只有萤石型。按构造特征分为糖粒状矿石、角砾状矿石、条带状—条纹状矿石、骨架状矿石和伟晶状矿石。矿石结构有交代结构、交代残余结构。充填萤石是由于海底喷发作用,伴随有大量co2,h2s,hf,sif4等气体喷出,其中氟大部分暂封闭于海域中,这部分氟与海水中的硫酸盐、碳酸盐和卤化物等发生化学反应,夺取其中的ca,形成caf,而进行迁移。在火山喷发间隙期间所发生的海相化学沉积成岩过程中,已形成caf2(包括沉积成岩作用期间形成的)与碳酸盐一起,以萤石形式沉淀下来,构成矿化层。这类矿层与岩层呈整合接触,构成层状或似层状矿体。这种由原始沉积形成的矿层,构成矿区内多处出现的改造矿床的物质基础。

近些年来,沉积萤石矿床已为世人广泛注意。由于它展布面积大,常有着巨大的caf 2储量,具有胜过脉状矿床的重要的经济意义和科研价值。该矿床的成因与形成机制,不但在国内而且在世界上也具有一定的代表*。

只有部分矿床具有工业意义。如美国蒙大拿州的crystal山矿床,在伟晶岩中有三条大的板状萤石矿体,共生矿物有黑云母、石英、长石等。俄罗斯产有与分异囊状伟晶岩有关的萤石矿床,萤石和水晶晶体共生,产于花岗伟晶岩内的晶洞和“晶囊”内,其中有光学级萤石。该区的分异囊状伟晶岩主要发育在侵入体顶部,尤其是花岗岩与变质岩的缓倾斜接触面上。这类分异囊状伟晶岩,可按矿物成分分为:石英-长石伟晶岩和石英-萤石-长石伟晶岩。含萤石晶体的矿巢和矿囊,主要分布在伟晶岩体中部的长石带和石英核的接触带内,根据光学萤石晶体中的气-液包裹体测温,其生成温度为98~145℃。

在**,这种类型的萤石矿床已成为重要类型,包括mihara、zinbu、hoei和kusai-ban矿床。萤石矿体产于花岗岩与石灰岩接触带上,主要产于外接触带中。萤石呈浸染状产于矽卡岩中,伴生矿物有锡石、白钨矿、黄铜矿、闪锌矿等(k.sato,1980)。

这是在萤石矿床风化壳中的粘土和砂中残积的萤石富集体,也包括深度风化的萤石矿脉的上部(深度可超过30m)。美国伊利诺伊和肯塔基州以及英国都有这类矿床,并且有重要价值。法国中部地块的莫凡也有此类矿床。

意大利罗马北部的castel giuliano地区的几个湖泊里,有现代沉积的萤石矿床。萤石呈浸染状,散布在现代湖泊的未固结的火山灰及粘土质沉积物中。caf2含量为35%~55%。计储量达800万t。共生矿物有重晶石、磷灰石、解石,白云石和蛋白石。a.h.g.mitchell等(1981年)也指出,在意大利罗马省有与第四系碱*火山岩有关的萤石矿化,在火山喷发中心之间的大盆地中,发育有来源于火山岩的河湖沉积。其中,重晶石、方解石和*细粒的萤石含量高达60%。非洲肯尼亚山马加迪湖内的萤石也属此类。

我国萤石资源丰富,到目前为止,发现并已经地质勘查的萤石矿床约290个,探明储量达1.5亿t,居世界首位。中国萤石矿成矿时代主要为中生代,次为晚古生代末期,分布地区主要为东南沿海的浙江、福建及江西,次为中南地区的湖南、湖北、河南和华北地区的内蒙古、吉林;此外,广东、陕西、河北、山西、安徽、四川、云南、江苏、北京及贵州等地也有分布(图9-4)。

中国萤石矿成矿大地构造单元主要为华南造山带和北山-内蒙古-吉林造山系,次为扬子准地台、祁秦造山系东段、华北准地台东北部及天山-兴安造山系。赋矿围岩主要为碳酸盐岩和硅质岩(沉积岩、变质岩、侵入岩及火山岩)。与成矿有关的岩浆岩主要为海西末期、印支期及燕山期中酸*侵入岩和火山岩。控矿构造主要为深大断裂及次级断裂。据空间分布特征及其与大地构造的关系,可划分出6个成矿区(带)(图9-5)。①东南沿海成矿带,范围基本与华南造山带吻合;呈ne向延伸,南西起自南宁,北东止于宁波,长约1800 km;北西起自长江,南东止于海边,*宽处约760 km。分布有萤石矿床70余个,主要为大中型,储量居**之首,均为热液充填型,是我国*重要的萤石成矿带。②扬子成矿带,位于扬子准地台内,延伸方向呈nee—sw w,与地台长轴方向相同,西起自昭通,东止于太湖,长约2080 km,宽约100~520 km。有萤石矿床40余个,主要为小型,部分为大中型,均为热液充填型。③东秦岭成矿带,位于昆祁秦造山系东段,延伸方向为nw—se向;西起自西安,东止六安,长约1920 km,宽约120 km;有萤石矿床18个,其中大型3个,中型7个,小型8个,均为热液充填型。④内蒙古-吉林成矿带,位于北山-内蒙古-吉林造山系中,西起内蒙古达来呼布镇,东止吉林市,长约2800 km,宽约2400 km。有萤石矿20余个,以中大型矿床为主,***大的矿床(苏莫查干敖包萤石矿床)位于本区,有热水沉积型及热液充填型两成矿带。⑤兴安成矿区,主要位于天山-兴安造山系东端,延伸方向为北北东,长约800 km,宽约320 km。有萤石矿床8个,其中2个为中型,6个为小型,均为热液充填型。⑥华北成矿区,位于华北准地台东北部,长约800km,南北宽约280 km。有14个萤石矿床,其中1个大型,5个中型,8个小型,均为热液充填型。

图9-5中国单一型萤石矿床成矿区带

ⅰ—东南沿海成矿带;ⅱ—扬子成矿带;ⅲ—东秦岭成矿带;ⅳ—内蒙古-吉林成矿带;ⅴ—兴安成矿区;ⅵ—华北成矿区

中国萤石矿床赋矿岩层从太古宇、元古宇至中生界都有,但比较集中于古生代的奥陶系、二叠系和中生界。从矿床成因考虑,萤石矿床(除沉积萤石矿床外)多在成岩以后,由热液活动引起。因此,即使矿床赋存于古老变质岩地层,其成矿时代也比较晚。经统计可知,我国萤石矿床的90%与中生代燕山期造山运动有关。同时在燕山期内,又以燕山晚期成矿*为有利。

控制萤石成矿作用的主要是岩石类型和构造。适宜的岩相和岩*往往是萤石成矿物质来源的重要基础,褶皱和断裂为成矿溶液提供通道和有利的容矿空间。在这些因素中,对不同类型矿床而言,各自所起作用程度也不同。

岩浆岩类型对萤石矿化的影响因矿床类型而异。一般与萤石矿化有关的岩浆岩多为酸*或中*,很少与基*岩浆岩有关,以酸*花岗岩(包括黑云母花岗岩、花岗斑岩)及某些中酸*岩石(如花岗闪长岩、闪长岩)等富sio2的钙碱*岩石对成矿有利。碎屑岩有利于充填矿床的形成。

产于碳酸盐岩地区,与岩浆岩无成生联系的萤石矿床类型中,萤石矿化对围岩的依赖*更为**,如川东南、黔东北地区广泛发育的萤石、重晶石矿化,主要集中在下奥陶统红花园组中-厚层较纯的生物碎屑灰岩中,而其上部的大弯组(或湄潭组)的灰岩、粉砂岩,含泥质灰岩夹页岩薄层的岩组,只在其底部,而且与红花园组联控条件下才有萤石矿化。红花园组下部分乡组和南津关组(或桐梓组)的灰质白云岩、白云质灰岩矿化很少,也只有与红花园组联控时,才有可能形成矿化或构成工业矿体。

构造对萤石矿床的控制作用*其明显,除部分产于沉积碳酸盐岩石中的矿床与背斜有关,产于背斜核部或两翼外,在我国萤石资源中占有重要地位的硅酸盐岩石中的矿床,均毫无例外的受断裂构造所控制,碳酸盐岩石中的充填交代型矿床,多数也与断裂构造有关。在一个矿床或矿田内,虽然可能有几组方向不同的矿脉,但总有一个方向的矿脉出现频率**,规模*大,矿化*好,说明当几组合矿断裂并存时,通常只有某一方向的断裂含矿**佳,这个方向的断裂往往成为矿区或矿田的主导控矿断裂或主要控矿断裂。

断裂裂隙既是成矿溶液的通道,又是容矿的空间,在相同条件下,断裂裂隙发育、岩石构造破碎的地区(地段)容易成矿。断裂裂隙的控矿对于各类萤石矿床均无例外,但主导断裂方向有差别。许多萤石矿床实例表明,在一个矿床或矿田内,尽管可以分布有许多不同产状的、相互间也有联系的断裂,但是总有一个方向的含矿*佳,往往成为矿区的主导控矿断裂。这种主导断裂,在那些与背斜有关的矿床内,往往垂直于背斜轴方向,少数与背斜平行。对一个较大地区范围内也有类似的规律。例如,中国东南部广大萤石分布地区,大部分含矿断裂为北东向或北北东向。如果按矿床规模统计含矿断裂走向,则89.3%的大型矿床主矿脉走向为北东向,少数大型矿床的矿脉走向为北西向,从更大范围看,华北的东部沿海、华中、华南、华东等大片中生代燕山期岩浆活动地带萤石矿主导矿脉方向多数也是北东向,少数为北西向,这表明.我国东部大部分矿床含矿主导方向为北东向的规律,完全是受中国东部环太平洋西岸北东向构造方向制约。

1、萤石粉体中含有卤族元素氟,能降低难熔物质熔点,促进炉渣流动,使渣和金属分离,冶炼过程中脱硫,脱磷,增强金属可煅*和抗张强度等特点。

2、萤石粉的用途主要是应用于冶金工业,比如炼钢、炼铁等。主要是因为萤石粉中能够提炼出一种名叫“氟”的物质,这种物质能够使得在炼钢的过程中有效的去除杂质。在成产玻璃与搪瓷的时候,也会使用到萤石粉。

1、世界萤石产量的一半用以制造氢氟酸,进而发展制造冰晶石,用于炼铝工业等。电冰箱里的冷却剂(氟利昂)要用萤石。

2、萤石另一重要用途是生产氢氟酸。氢氟酸是通过酸级萤石(氟石精矿)同硫酸在加热炉或罐中反应而产生出来的,分无水氢氟酸和有水氢氟酸,它们都是一种无色液体,易挥发,有强烈的刺激气味和强烈的腐蚀*。

3、在制铝工业中,氢氟酸用来生产氟化铝、人造冰晶石、氟化钠和氟化镁。在航空、航天工业中,氢氟酸主要用来生产喷气机液体推进剂,**喷气燃料推进剂。

4、氢氟酸是有机氟化工的基础原料,它通过与氯仿和四氯化碳相互作用,生产**小、化学稳定*高的氟化的含氯烃和碳氟化合物,作冷冻剂,空气溶胶促进剂,溶剂聚合物的中间体和碳氟化合物树脂和弹*体。

5、氢氟酸与四氯化碳反应制成氟利昂(通常以f表示)。氟利昂除作为冷冻剂外,还广泛用于喷雾剂、灭火剂、氟塑料等。

6、在医**面,氟有机化合物还可以制造含氟****,含氟可的松,含氟碳人造血液、人造心脏和骨骼。在无机氟化工业中,可以生产杀虫剂、防腐剂、防护剂、添加剂、助熔剂和抗氧化剂等。

7、萤石也广泛应用于玻璃、陶瓷、水泥等建材工业中,其用量在我国占第2位。在玻璃工业中,萤石作为助熔剂、遮光剂加入,它能促进玻璃原料的熔化。

8、在水泥生产中,萤石作为矿化剂加入。萤石能降低炉料的烧结温度,减少燃料消耗,同时还能增强烧结时*料液相粘度,促进硅酸三钙的形成。

9、在陶瓷工业中,萤石主要用作瓷釉,它能在瓷釉生产过程中起到助色和助熔作用。如在红色瓷釉中加入萤石后能色泽光亮鲜艳,在陶瓷生产瓷釉中的萤石加入量一般约10%~20%。还参与到搪瓷制品的制造之中。

10、萤石还应用于搪瓷工业和铸石生产中,其加入量分别为3%~10%和3%。

1、萤石在南非、墨西哥、蒙古、俄罗斯、美国、泰国、西班牙等地也有产出。中国是世界上萤石矿产*多的**之一,主要产于湖南东南部的郴州一带,此外浙江、福建等地也有出产。

2、矿物内的电子在外界能量的刺激下,会由低能状态进入高能状态,当外界能量刺激停止时,电子又由高能状态转入低能状态,这个过程就会发光。

3、萤石来自火山岩浆中,在岩浆冷却过程中,被岩浆分离出来的气水溶液中含有许多物质,以氟为主,在溶液沿裂隙上升过程中,温度降低,压力减小,气水溶液中的氟离子与周围岩石中的钙离子结合,形成氟化钙,经过冷却结晶后就得到了萤石。

4、氟化钙晶体原本无色透明。萤石的晶体结构存在“空洞”,很容易被其他离子填充,所以在自然界中,无色透明的纯净萤石*其稀少。这种结构缺陷,同时也让萤石成为颜色*丰富的石头。

关于萤石块和萤石块矿价格的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。